In [1]:
!conda list | grep pandas
pandas 1.2.1 py38hb2f4e1b_0
In [2]:
!import pandas as pd
In [3]:
df = pd.read_csv('desktop/friend_list.csv')
In [4]:
df
Out[4]:
name | age | job | |
---|---|---|---|
0 | John | 20 | student |
1 | Jenny | 30 | developer |
2 | Nate | 30 | teacher |
3 | Julia | 40 | dentist |
4 | Brian | 45 | manager |
5 | Chris | 25 | intern |
In [5]:
# 앞 두개만 출력
df.head(2)
Out[5]:
name | age | job | |
---|---|---|---|
0 | John | 20 | student |
1 | Jenny | 30 | developer |
In [6]:
#끝 세개만 출력
df.tail(3)
Out[6]:
name | age | job | |
---|---|---|---|
3 | Julia | 40 | dentist |
4 | Brian | 45 | manager |
5 | Chris | 25 | intern |
In [15]:
#탭으로 데이터 구분시 그것을 알려주기 위한 코드
df = pd.read_csv('desktop/friend_list_tab.csv', delimiter = '\t')
In [16]:
df
Out[16]:
John | 20 | student | |
---|---|---|---|
0 | jenny | 30 | developer |
1 | nate | 30 | teacher |
2 | julia | 40 | dentist |
3 | brian | 45 | manager |
4 | chris | 25 | intern |
In [17]:
#데이터에 제목 없을때
df = pd.read_csv('desktop/friend_list_tab.csv', delimiter = '\t', header = None)
In [18]:
df
Out[18]:
0 | 1 | 2 | |
---|---|---|---|
0 | John | 20 | student |
1 | jenny | 30 | developer |
2 | nate | 30 | teacher |
3 | julia | 40 | dentist |
4 | brian | 45 | manager |
5 | chris | 25 | intern |
In [19]:
# 헤더정보 넣기
df.columns = ['name', 'age', 'job']
In [20]:
df
Out[20]:
name | age | job | |
---|---|---|---|
0 | John | 20 | student |
1 | jenny | 30 | developer |
2 | nate | 30 | teacher |
3 | julia | 40 | dentist |
4 | brian | 45 | manager |
5 | chris | 25 | intern |
In [21]:
#한번에 헤더정보 넣기
df = pd.read_csv('desktop/friend_list_tab.csv', delimiter = '\t', header = None, names = ['name', 'age', 'job'])
In [22]:
df
Out[22]:
name | age | job | |
---|---|---|---|
0 | John | 20 | student |
1 | jenny | 30 | developer |
2 | nate | 30 | teacher |
3 | julia | 40 | dentist |
4 | brian | 45 | manager |
5 | chris | 25 | intern |
In [ ]:
In [1]:
!conda list | grep pandas
pandas 1.2.1 py38hb2f4e1b_0
In [2]:
!import pandas as pd
In [3]:
df = pd.read_csv('desktop/friend_list.csv')
In [4]:
df
Out[4]:
name | age | job | |
---|---|---|---|
0 | John | 20 | student |
1 | Jenny | 30 | developer |
2 | Nate | 30 | teacher |
3 | Julia | 40 | dentist |
4 | Brian | 45 | manager |
5 | Chris | 25 | intern |
In [5]:
# 앞 두개만 출력
df.head(2)
Out[5]:
name | age | job | |
---|---|---|---|
0 | John | 20 | student |
1 | Jenny | 30 | developer |
In [6]:
#끝 세개만 출력
df.tail(3)
Out[6]:
name | age | job | |
---|---|---|---|
3 | Julia | 40 | dentist |
4 | Brian | 45 | manager |
5 | Chris | 25 | intern |
In [15]:
#탭으로 데이터 구분시 그것을 알려주기 위한 코드
df = pd.read_csv('desktop/friend_list_tab.csv', delimiter = '\t')
In [16]:
df
Out[16]:
John | 20 | student | |
---|---|---|---|
0 | jenny | 30 | developer |
1 | nate | 30 | teacher |
2 | julia | 40 | dentist |
3 | brian | 45 | manager |
4 | chris | 25 | intern |
In [17]:
#데이터에 제목 없을때
df = pd.read_csv('desktop/friend_list_tab.csv', delimiter = '\t', header = None)
In [18]:
df
Out[18]:
0 | 1 | 2 | |
---|---|---|---|
0 | John | 20 | student |
1 | jenny | 30 | developer |
2 | nate | 30 | teacher |
3 | julia | 40 | dentist |
4 | brian | 45 | manager |
5 | chris | 25 | intern |
In [19]:
# 헤더정보 넣기
df.columns = ['name', 'age', 'job']
In [20]:
df
Out[20]:
name | age | job | |
---|---|---|---|
0 | John | 20 | student |
1 | jenny | 30 | developer |
2 | nate | 30 | teacher |
3 | julia | 40 | dentist |
4 | brian | 45 | manager |
5 | chris | 25 | intern |
In [21]:
#한번에 헤더정보 넣기
df = pd.read_csv('desktop/friend_list_tab.csv', delimiter = '\t', header = None, names = ['name', 'age', 'job'])
In [22]:
df
Out[22]:
name | age | job | |
---|---|---|---|
0 | John | 20 | student |
1 | jenny | 30 | developer |
2 | nate | 30 | teacher |
3 | julia | 40 | dentist |
4 | brian | 45 | manager |
5 | chris | 25 | intern |
In [ ]:
'데이터 전처리(Python Pandas)' 카테고리의 다른 글
Pandas 기초7 (데이터프레임 생성 및 추가) (0) | 2021.01.26 |
---|---|
Pandas 기초 5 (데이터프레임 행,열 삭제) (0) | 2021.01.26 |
Pandas 기초 4(데이터프레임 필터링) (0) | 2021.01.26 |
Pandas 기초 3(데이터프레임파일 저장) (0) | 2021.01.26 |
Pandas 기초 2(데이터프레임파일 생성) (0) | 2021.01.26 |